Rf Transceiver Design For Mimo Wireless Communications Lecture Notes In Electrical Engineering Digital Timing MeasurementsMillimeter Wave Wireless CommunicationsOFDM Baseband Receiver Design for Wireless CommunicationsOptical Communication TechnologyAdvanced Antenna Systems for 5G Network DeploymentsTransistor Level Modeling for Analog/RF IC DesignWireless Transceiver DesignSmart AntennasMIMO Wireless CommunicationsMillimeter-Wave Circuits for 5G and RadarMassive MIMOmmWave Massive MIMOMIMO-OFDM for LTE, WiFi and WiMAXVisible Light CommunicationsHigh Data Rate Transmitter CircuitsFundamentals of Wireless CommunicationRF Transceiver Design for MIMO Wireless CommunicationsWireless Transceiver Systems DesignMIMO Wireless Communications Full-Duplex Communications for Future Wireless NetworksMIMO Radar Signal ProcessingBaseband Receiver Design for Wireless MIMO-OFDM CommunicationsWireless LAN RadiosLow-Noise Wide-Band Amplifiers in Bipolar and CMOS TechnologiesWireless TechnologiesIntroduction to Space-Time Wireless CommunicationsRF System Design of Transceivers for Wireless Communications Foundations of MIMO CommunicationCoding for MIMO Communication SystemsRF and Microwave Transmitter DesignRF-Frontend Design for Process-Variation-Tolerant ReceiversRF Imperfections in High-rate Wireless Page 1/37 SystemsmmWave Massive MIMOSoftware-Defined Radio for EngineersShort-range Wireless CommunicationLow Power RF Circuit Design in Standard CMOS TechnologyRF Analog Impairments Modeling for Communication Systems SimulationAnalysis and Transceiver Design for the MIMO Broadcast ChannelMobile Terminal Receiver DesignFundamentals of 5G Mobile Networks #### **Digital Timing Measurements** This is one of the first books on the emerging research topic of digital compensation of RF imperfections. The book presents a new multidisciplinary vision on the design of wireless communication systems. In this approach the imperfections of the RF front-ends are accepted and digital signal processing algorithms are designed to suppress their impact on system performance. The book focuses on multiple-antenna orthogonal frequency division multiplexing (MIMO OFDM). #### **Millimeter Wave Wireless Communications** Conclusions and Future Research. **OFDM Baseband Receiver Design for Wireless Communications**Page 2/37 Combines in one volume the basics of evolving radio access technologies and their implementation in mobile phones Reviews the evolution of radio access technologies (RAT) used in mobile phones and then focuses on the technologies needed to implement the LTE (Long term evolution) capability Coverage includes the architectural aspects of the RF and digital baseband parts before dealing in more detail with some of the hardware implementation Unique coverage of design parameters and operation details for LTE-A phone transceiver Discusses design of multi-RAT Mobile with the consideration of cost and form factors Provides in one book a review of the evolution of radio access technologies and a good overview of LTE and its implementation in a handset Unveils the concepts and research updates of 5G technologies and the internal hardware and software of a 5G phone #### **Optical Communication Technology** Low Power Consumption is one of the critical issues in the performance of small battery-powered handheld devices. Mobile terminals feature an ever increasing number of wireless communication alternatives including GPS, Bluetooth, GSM, 3G, WiFi or DVB-H. Considering that the total power available for each terminal is limited by the relatively slow increase in battery performance expected in the near future, the need for efficient circuits is now critical. This book presents the basic techniques available to design low power RF CMOS analogue circuits. It gives circuit designers a complete guide of alternatives to optimize power consumption and explains the application of these rules in the most common RF building blocks: LNA, mixers and PLLs. It is set out using practical examples and offers a unique perspective as it targets designers working within the standard CMOS process and all the limitations inherent in these technologies. #### **Advanced Antenna Systems for 5G Network Deployments** The first book to present a systematic and coherent picture of MIMO radars Due to its potential to improve target detection and discrimination capability, Multiple-Input and Multiple-Output (MIMO) radar has generated significant attention and widespread interest in academia, industry, government labs, and funding agencies. This important new work fills the need for a comprehensive treatment of this emerging field. Edited and authored by leading researchers in the field of MIMO radar research, this book introduces recent developments in the area of MIMO radar to stimulate new concepts, theories, and applications of the topic, and to foster further cross-fertilization of ideas with MIMO communications. Topical coverage includes: Adaptive MIMO radar Beampattern analysis and optimization for MIMO radar MIMO radar for target detection, parameter estimation, tracking, association, and recognition MIMO radar prototypes and measurements Space-time codes for MIMO radar Statistical MIMO radar Waveform design for MIMO radar Written in an easy-to-follow tutorial style, MIMO Radar Signal Processing serves as an excellent course book for graduate students and a valuable reference for researchers in academia and industry. #### Transistor Level Modeling for Analog/RF IC Design Multiple-input multiple-output (MIMO) technology constitutes a breakthrough in the design of wireless communications systems, and is already at the core of several wireless standards. Exploiting multipath scattering, MIMO techniques deliver significant performance enhancements in terms of data transmission rate and interference reduction. This 2007 book is a detailed introduction to the analysis and design of MIMO wireless systems. Beginning with an overview of MIMO technology, the authors then examine the fundamental capacity limits of MIMO systems. Transmitter design, including precoding and space-time coding, is then treated in depth, and the book closes with two chapters devoted to receiver design. Written by a team of leading experts, the book blends theoretical analysis with physical insights, and highlights a range of key design challenges. It can be used as a textbook for advanced courses on wireless communications, and will also appeal to researchers and practitioners working on MIMO wireless systems. #### **Wireless Transceiver Design** The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there is a growing concern about energy consumption of wireless communication systems. Thus, future wireless systems have to satisfy three main requirements: i) having a high throughput; ii) simultaneously serving many users; and iii) having less energy consumption. Massive multiple-input multiple-output (MIMO) technology, where a base station (BS) equipped with very large number of antennas (collocated or distributed) serves many users in the same time-frequency resource, can meet the above requirements, and hence, it is a promising candidate technology for next generations of wireless systems. With massive antenna arrays at the BS, for most propagation environments, the channels become favorable, i.e., the channel vectors between the users and the BS are (nearly) pairwisely orthogonal, and hence, linear processing is nearly optimal. A huge throughput and energy efficiency can be achieved due to the multiplexing gain and the array gain. In particular, with a simple power control scheme, Massive MIMO can offer uniformly good service for all users. In this dissertation, we focus on the performance of Massive MIMO. The dissertation consists of two main parts: fundamentals and system designs of Massive MIMO. In the first part, we focus on fundamental limits of the system performance under practical constraints such as low complexity processing, limited length of each coherence interval, intercell interference, and finite-dimensional channels. We first study the potential for power savings of the Massive MIMO uplink with maximum-ratio combining (MRC), zero-forcing, and minimum mean-square error receivers, under perfect and imperfect channels. The energy and spectral efficiency tradeoff is investigated. Secondly, we consider a physical channel model where the angular domain is divided into a finite number of distinct directions. A lower bound on the capacity is derived, and the effect of pilot contamination in this finite-dimensional channel model is analyzed. Finally, some aspects of favorable propagation in Massive MIMO under Rayleigh fading and line-of-sight (LoS) channels are investigated. We show that both Rayleigh fading and LoS environments offer favorable propagation. In the second part, based on the fundamental analysis in the first part, we propose some system designs for Massive MIMO. The acquisition of channel state information (CSI) is very importantin Massive MIMO. Typically, the channels are estimated at the BS through uplink training. Owing to the limited length of the coherence interval, the system performance is limited by pilot contamination. To reduce the pilot contamination effect, we propose an eigenvalue-decomposition-based scheme to estimate the channel directly from the received data. The proposed scheme results in better performance compared with the conventional training schemes due to the reduced pilot contamination. Another important issue of CSI acquisition in Massive MIMO is how to acquire CSI at the users. To address this issue, we propose two channel estimation schemes at the users: i) a downlink "beamforming training" scheme, and ii) a method for blind estimation of the effective downlink channel gains. In both schemes, the channel estimation overhead is independent of the number of BS antennas. We also derive the optimal pilot and data powers as well as the training duration allocation to maximize the sum spectral efficiency of the Massive MIMO uplink with MRC receivers, for a given total energy budget spent in a coherence interval. Finally, applications of Massive MIMO in relay channels are proposed and analyzed. Specifically, we consider multipair relaying systems where many sources simultaneously communicate with many destinations in the same time-frequency resource with the help of a massive MIMO relay. A massive MIMO relay is equipped with many collocated or distributed antennas. We consider different duplexing modes (full-duplex and half-duplex) and different relaying protocols (amplify-and-forward, decode-and-forward, two-way relaying, and one-way relaying) at the relay. The potential benefits of massive MIMO technology in these relaying systems are explored in terms of spectral efficiency and power efficiency. #### **Smart Antennas** Fundamentals of 5G Mobile Networks provides an overview of the key features of the 5th Generation (5G) mobile networks, discussing the motivation for 5G and the main challenges in developing this new technology. This book provides an insight into the key areas of research that will define this new system technology paving $\frac{Page}{Page}$ 8/37 the path towards future research and development. The book is multi-disciplinary in nature, and aims to cover a whole host of intertwined subjects that will predominantly influence the 5G landscape, including Future Internet, cloud computing, small cells and self-organizing networks (SONs), cooperative communications, dynamic spectrum management and cognitive radio, Broadcast-Broadband convergence, 5G security challenge, and green RF. The book aims to be the first of its kind towards painting a holistic perspective on 5G Mobile, allowing 5G stakeholders to capture key technology trends on different layering domains and to identify potential inter-disciplinary design aspects that need to be solved in order to deliver a 5G Mobile system that operates seamlessly as a piece of the 5G networking jigsaw. Key features: • Addresses the fundamentals of 5G mobile networks serving as a useful study guide for mobile researchers and system engineers aiming to position their research in this fast evolving arena. • Develops the Small cells story together with nextiil/2]generation SON (self-organizing networks) systems as solutions for addressing the unprecedented traffic demand and variations across cells. • Elaborates Mobile Cloud technology and Services for future communication platforms, acting as a source of inspiration for corporations looking for new business models to harness the 5G wave. • Discusses the open issues facing broadi¿1/2]scale commercial deployment of white space networks, including the potential for applications towards the future 5G standard. • Provides a scientific assessment for broadcast and mobile broadband convergence coupled together with a 'win-win' convergence solution to harmonize the broadcasting and mobile industry. • Describes the key components, trends and challenges, as well as the system requirements for 5G transceivers to support multiï¿1/2]standard radio, a source of inspiration for RF engineers and vendors to tie down the requirements and potential solutions for next generation handsets. #### **MIMO Wireless Communications** Smart Antennas—State of the Art brings together the broad expertise of 41 European experts in smart antennas. They provide a comprehensive review and an extensive analysis of the recent progress and new results generated during the last years in almost all fields of smart antennas and MIMO (multiple-input multipleoutput) transmission. The following represents a summarized table of content.Receiver: space-time processing, antenna combining, reduced rank processing, robust beamforming, subspace methods, synchronization, equalization, multiuser detection, iterative methods Channel: propagation, measurements and sounding, modelling, channel estimation, direction-of-arrival estimation, subscriber location estimation Transmitter: space-time block coding, channel side information, unified design of linear transceivers, ill-conditioned channels, MIMO-MAC strategies Network Theory: channel capacity, network capacity, multihop networks Technology: antenna design, transceivers, demonstrators and testbeds, future air interfaces Applications and Systems: 3G system and link level aspects, MIMO HSDPA, MIMO-WLAN/UMTS implementation issues This book serves as a reference for scientists and engineers who need to be aware of the leading edge research in multiple-antenna communications, an essential technology for emerging broadband wireless systems. #### Millimeter-Wave Circuits for 5G and Radar The Complete "Tool Kit for the Hottest Area in RF/Wireless Design! Short-range wireless—communications over distances of less than 100 meters—is the most rapidly growing segment of RF/wireless engineering. Alan Bensky is an internationally recognized expert in short-range wireless, and this new edition of his bestselling book is completely revised to cover the latest developments in this fast moving field. You'll find coverage of such cutting-edge topics as: • architectural trends in RF/wireless integrated circuits • compatibility and conflict issues between different short-range wireless systems • "Zigbee and related new IEEE standards for short-range communications • latest U.S. and international regulatory standards for spread spectrum, ultra wideband, and other advanced communications techniques Alan Bensky also thoroughly discusses the fundamentals of radio signal propagation, communications protocols and modulation methods, information theory, antennas and transmission lines, receivers, transmitters, radio system design, and how to successfully implement a short-range wireless system. All material has been carefully updated and revised to make it as technically up-to-the-minute as possible. You'll also find coverage of Bluetooth, "Wi-Fi and related 802.11 variants, digital modulation methods, and other essential information for planning and designing short-range wireless hardware and networks. This new edition will, like the first edition, be an invaluable reference for engineers and technical professionals who design, support, market, and maintain short-range wireless communications systems. No other book contains EVERYTHING pertaining to short-range wireless design. Covers all the hot topics like 802.11, Zigbee, Wi-Fi and Bluetooth. #### **Massive MIMO** mmWave Massive MIMO: A Paradigm for 5G is the first book of its kind to hinge together related discussions on mmWave and Massive MIMO under the umbrella of 5G networks. New networking scenarios are identified, along with fundamental design requirements for mmWave Massive MIMO networks from an architectural and practical perspective. Working towards final deployment, this book updates the research community on the current mmWave Massive MIMO roadmap, taking into account the future emerging technologies emanating from 3GPP/IEEE. The book's editors draw on their vast experience in international research on the forefront of the mmWave Massive MIMO research arena and standardization. This book aims to talk openly about the topic, and will serve as a useful reference not only for postgraduates students to learn more on this evolving field, but also as inspiration for mobile communication researchers who want to make further innovative strides in the field to mark their legacy in the 5G arena. Contains tutorials on the basics of mmWave and Massive MIMO Identifies new 5G networking scenarios, along with design requirements from an architectural and practical perspective Details the latest updates on the evolution of the mmWave Massive MIMO roadmap, considering future emerging technologies emanating from 3GPP/IEEE Includes contributions from leading experts in the field in modeling and prototype design for mmWave Massive MIMO design Presents an ideal reference that not only helps postgraduate students learn more in this evolving field, but also inspires mobile communication researchers towards further innovation #### mmWave Massive MIMO mmWave Massive MIMO: A Paradigm for 5G is the first book of its kind to hinge together related discussions on mmWave and Massive MIMO under the umbrella of 5G networks. New networking scenarios are identified, along with fundamental design requirements for mmWave Massive MIMO networks from an architectural and practical perspective. Working towards final deployment, this book updates the research community on the current mmWave Massive MIMO roadmap, taking into account the future emerging technologies emanating from 3GPP/IEEE. The book's editors draw on their vast experience in international research on the forefront of the mmWave Massive MIMO research arena and standardization. This book aims to talk openly about the topic, and will serve as a useful reference not $\frac{Page}{13/37}$ only for postgraduates students to learn more on this evolving field, but also as inspiration for mobile communication researchers who want to make further innovative strides in the field to mark their legacy in the 5G arena. Contains tutorials on the basics of mmWave and Massive MIMO Identifies new 5G networking scenarios, along with design requirements from an architectural and practical perspective Details the latest updates on the evolution of the mmWave Massive MIMO roadmap, considering future emerging technologies emanating from 3GPP/IEEE Includes contributions from leading experts in the field in modeling and prototype design for mmWave Massive MIMO design Presents an ideal reference that not only helps postgraduate students learn more in this evolving field, but also inspires mobile communication researchers towards further innovation #### MIMO-OFDM for LTE, WiFi and WiMAX Advanced Antenna Systems for 5G Network Deployments: Bridging the Gap between Theory and Practice provides a comprehensive understanding of the field of advanced antenna systems (AAS) and how they can be deployed in 5G networks. The book gives a thorough understanding of the basic technology components, the state-of-the-art multi-antenna solutions, what support 3GPP has standardized together with the reasoning, AAS performance in real networks, and how AAS can be used to enhance network deployments. Explains how AAS features impact network performance and how AAS can be effectively used in a 5G network, Page 14/37 based on either NR and/or LTE Shows what AAS configurations and features to use in different network deployment scenarios, focusing on mobile broadband, but also including fixed wireless access Presents the latest developments in multi-antenna technologies, including Beamforming, MIMO and cell shaping, along with the potential of different technologies in a commercial network context Provides a deep understanding of the differences between mid-band and mm-Wave solutions #### **Visible Light Communications** Visible light communication (VLC) has drawn much attention recently. Compared to the traditional radio frequency wireless communications (RFWC), VLC has many advantages, such as worldwide availability, high security, large bandwidth, immunity to radio frequency interference, and unlicensed spectrum. Due to its superiority, VLC has become a complementary solution to the overcrowded RFWC. This book intends to introduce the latest research progress in VLC, which covers the novel modulation techniques for VLC, the multiple input multiple output (MIMO) techniques for VLC, the collaborative communication techniques for VLC, and the practical applications of VLC. The book is a useful resource for researchers, engineers, scientists, and students interested in understanding and designing VLC systems. #### **High Data Rate Transmitter Circuits** The Second Edition of OFDM Baseband Receiver Design for Wirless Communications, this book expands on the earlier edition with enhanced coverage of MIMO techniques, additional baseband algorithms, and more IC design examples. The authors cover the full range of OFDM technology, from theories and algorithms to architectures and circuits. The book gives a concise yet comprehensive look at digital communication fundamentals before explaining signal processing algorithms in receivers. The authors give detailed treatment of hardware issues - from architecture to IC implementation. Links OFDM and MIMO theory with hardware implementation Enables the reader to transfer communication received concepts into hardware; design wireless receivers with acceptable implemntation loss; achieve low-power designs Covers the latest standards, such as DVB-T2, WiMax, LTE and LTE-A Includes more baseband algorithms, like soft-decoding algorithms such as BCIR and SOVA Expanded treatment of channel models, detection algorithms and MIMO techniques Features concrete design examples of WiMAX systems and cognitive radio apllications Companion website with lecture slides for instructors Based on materials developed for a course in digital communication IC design, this book is ideal for graduate students and researchers in VLSI design, wireless communications, and communications signal processing. Practicing engineers working on algorithms or hardware for wireless communications devices will also find this to be a key #### **Fundamentals of Wireless Communication** An accessible introduction to the theory of space-time wireless communications. #### **RF Transceiver Design for MIMO Wireless Communications** Uniquely, this book proposes robust space-time code designs for real-world wireless channels. Through a unified framework, it emphasizes how propagation mechanisms such as space-time frequency correlations and coherent components impact the MIMO system performance under realistic power constraints. Combining a solid mathematical analysis with a physical and intuitive approach to space-time coding, the book progressively derives innovative designs, taking into consideration that MIMO channels are often far from ideal. The various chapters of this book provide an essential, complete and refreshing insight into the performance behaviour of space-time codes in realistic scenarios and constitute an ideal source of the latest developments in MIMO propagation and space-time coding for researchers, R&D engineers and graduate students. Features include • Physical models and analytical representations of MIMO propagation channels, highlighting the strengths and weaknesses of various models • Overview of space- time coding techniques, covering both classical and more recent schemes under information theory and error probability perspectives • In-depth presentation of how real-world propagation affects the capacity and the error performance of MIMO transmission schemes • Innovative and practical designs of robust spacetime coding, precoding and antenna selection techniques for realistic propagation (including single-carrier and MIMO-OFDM transmissions) "This book offers important insights into how space-time coding can be tailored for real-world MIMO channels. The discussion of MIMO propagation models is also intuitive and welldeveloped." Arogyaswami J. Paulraj, Professor, Stanford University, CA "Finally a book devoted to MIMO from a new perspective that bridges the boundaries between propagation, channel modeling, signal processing and space-time coding. It is of high reference value, combining intuitive and conceptual explanations with detailed, stringent derivations of basic facts of MIMO." Ernst Bonek, Emeritus Professor, Technische Universität Wien, Austria * Presents space-time coding techniques for real-world MIMO channels * Contains new design methodologies and criteria that guarantee the robustness of space-time coding in real life wireless communications applications * Evaluates the performance of space-time coding in real world conditions #### **Wireless Transceiver Systems Design** This book deals with the optimization-based joint design of the transmit and $\frac{Page}{18/37}$ receive filters in MIMO broadcast channel in which the user terminals may be equipped with several antenna elements. Furthermore, the maximum performance of the system in the high power regime as well as the set of all feasible quality-ofservice requirements is analyzed. First, a fundamental duality is derived that holds between the MIMO broadcast channel and virtual MIMO multiple access channel. This duality construct allows for the efficient solution of problems originally posed in the broadcast channel in the dual domain where a possibly hidden convexity can often be revealed. On the basis of the established duality result, the gradientprojection algorithm is introduced as a tool to solve constrained optimization problems to global optimality under certain conditions. The gradient-projection tool is then applied to solving the weighted sum rate maximization problem which is a central optimization that arises in any network utility maximization. In the high power regime, a simple characterization of the obtained performance becomes possible due to the fact that the weighted sum rate utility converges to an affine asymptote in the logarithmic power domain. We find closed form expressions for these asymptotes which allows for a quantification of the asymptotic rate loss that linear transceivers have to face with respect to dirty paper coding. In the last part, we answer the fundamental question of feasibility in quality-of-service based optimizations with inelastic traffic that features strict delay constraints. Under the assumption of linear transceivers, not every set of quality-of-service requirements might be feasible making the power minimization problem with given lower bound constraints on the rate for example infeasible in these cases. We derive a complete description of the quality-of-service feasibility region for arbitrary channel matrices. #### **MIMO Wireless Communications** The optical world is continuously and rapidly evolving, and new challenges arise every day. As a result of these rapid changes, the need for up-to-date texts that address this growing field from an interdisciplinary perspective persists. This book presents an overview of new optical communication technologies and a bird's-eye view of some of the more promising technologies among them. The book covers the theoretical but also the practical aspects of technology implementation in a way that is suitable for undergraduate- and graduate-level students, as well as researchers and professional engineers. #### **Full-Duplex Communications for Future Wireless Networks** Based on the popular Artech House classic, Digital Communication Systems Engineering with Software-Defined Radio, this book provides a practical approach to quickly learning the software-defined radio (SDR) concepts needed for work in the field. This up-to-date volume guides readers on how to quickly prototype wireless designs using SDR for real-world testing and experimentation. This book explores advanced wireless communication techniques such as OFDM, LTE, WLA, and hardware targeting. Readers will gain an understanding of the core concepts behind wireless hardware, such as the radio frequency front-end, analog-to-digital and digital-to-analog converters, as well as various processing technologies. Moreover, this volume includes chapters on timing estimation, matched filtering, frame synchronization message decoding, and source coding. The orthogonal frequency division multiplexing is explained and details about HDL code generation and deployment are provided. The book concludes with coverage of the WLAN toolbox with OFDM beacon reception and the LTE toolbox with downlink reception. Multiple case studies are provided throughout the book. Both MATLAB and Simulink source code are included to assist readers with their projects in the field. #### **MIMO Radar Signal Processing** Discover the concepts and techniques needed to design millimeter-wave circuits for current and emerging wireless system applications. ### Baseband Receiver Design for Wireless MIMO-OFDM Communications This book discusses a number of challenges faced by designers of wireless receivers, given complications caused by the shrinking of electronic and mobile devices circuitry into ever-smaller sizes and the resulting complications on the manufacturability, production yield, and the end price of the products. The authors describe the impact of process technology on the performance of the end product and equip RF designers with countermeasures to cope with such problems. The mechanisms by which these problems arise are analyzed in detail and novel solutions are provided, including design guidelines for receivers with robustness to process variations and details of circuit blocks that obtain the required performance level. Describes RF receiver frontends and their building blocks from a system- and circuit-level perspective; Provides system-level analysis of a generic RF receiver frontend with robustness to process variations; Includes details of CMOS circuit design at 60GHz and reconfigurable circuits at 60GHz; Covers millimeter-wave circuit design with robustness to process variations. #### Wireless LAN Radios An accessible, comprehensive and coherent treatment of MIMO communication, drawing on ideas from information theory and signal processing. # Low-Noise Wide-Band Amplifiers in Bipolar and CMOS Technologies The editors and authors present a wealth of knowledge regarding the most relevant aspects in the field of MOS transistor modeling. The variety of subjects and the high quality of content of this volume make it a reference document for researchers and users of MOSFET devices and models. The book can be recommended to everyone who is involved in compact model developments, numerical TCAD modeling, parameter extraction, space-level simulation or model standardization. The book will appeal equally to PhD students who want to understand the ins and outs of MOSFETs as well as to modeling designers working in the analog and high-frequency areas. #### **Wireless Technologies** This book focuses on the multidisciplinary state-of-the-art of full-duplex wireless communications and applications. Moreover, this book contributes with an overview of the fundamentals of full-duplex communications, and introduces the most recent advances in self-interference cancellation from antenna design to digital domain. Moreover, the reader will discover analytical and empirical models to deal with residual self-interference and to assess its effects in various scenarios and applications. Therefore, this is a highly informative and carefully presented book by the leading scientists in the area, providing a comprehensive overview of full-duplex technology from the perspective of various researchers, and research groups worldwide. This book is designed for researchers and professionals working in wireless communications and engineers willing to understand the challenges and solutions full-duplex communication so to implement a full-duplex system. #### **Introduction to Space-Time Wireless Communications** This practical resource offers a thorough examination of RF transceiver design for MIMO communications. Offering a practical view on MIMO wireless systems, this book extends fundamental concepts on classic wireless transceiver design techniques to MIMO transceivers. This helps reader gain a very comprehensive understanding of the subject. This in-depth volume describes many theoretical and implementation challenges on MIMO transceivers and provides the practical solutions for these issues. This comprehensive book provides thorough descriptions of MIMO theoretical concepts, MIMO single carrier and OFDM modulation, RF transceiver design concepts, power amplifier, MIMO transmitter design techniques and their RF impairments, MIMO receiver design methods, RF impairments study including nonlinearity, DC-offset, I/Q imbalance and phase noise and their compensation in OFDM and MIMO techniques. In addition, it provides the most practical techniques to realize RF front-ends in MIMO systems. This book is supported with many design equations and illustrations. The first book dedicated to RF Transceiver design for MIMO systems, this volume serves as a current, one-stop guide offering you cost-effective solutions for your challenging projects in the field. #### **RF System Design of Transceivers for Wireless Communications** The fields of communication, signal processing, and embedded systems and circuits are brought together in this book. These fields come together with a single design goal, a WLAN transceiver which combines analog and digital design, VLSI and systems design, algorithms and architectures, as well as design and CAD/EDA. This book focuses on the overall approach to design problems and design organization needed for transceiver design. It does not focus on one particular standard. #### **Foundations of MIMO Communication** Wireless LAN Radios presents a sophisticated overview of the subject, covering theory while also emphasizing the practical aspects of this promising technology. Coverage includes 802.11 flavors and system requirements; receiver and transmitter radio architectures; analog impairments and issues; key radio building blocks; calibration techniques; case studies; and a brief discussion of 802.11n. It offers a meaningful presentation of real-world issues facing designers, engineers, theorists, and researchers working in this industry. #### **Coding for MIMO Communication Systems** Coding for MIMO Communication Systems is a comprehensive introduction and overview to the various emerging coding techniques developed for MIMO communication systems. The basics of wireless communications and fundamental issues of MIMO channel capacity are introduced and the space-time block and trellis coding techniques are covered in detail. Other signaling schemes for MIMO channels are also considered, including spatial multiplexing, concatenated coding and iterative decoding for MIMO systems, and space-time coding for non-coherent MIMO channels. Practical issues including channel correlation, channel estimation and antenna selection are also explored, with problems at the end of each chapter to clarify many important topics. A comprehensive book on coding for MIMO techniques covering main strategies Theories and practical issues on MIMO communications are examined in detail Easy to follow and accessible for both beginners and experienced practitioners in the field References at the end of each chapter for further reading Can be used with ease as a research book, or a textbook on a graduate or advanced undergraduate level course This book is aimed at advanced undergraduate and postgraduate students, researchers and practitioners in industry, as well as individuals working for government, military, science and technology institutions who would like to learn more about coding for MIMO communication systems. #### **RF and Microwave Transmitter Design** The Definitive, Comprehensive Guide to Cutting-Edge Millimeter Wave Wireless Design "This is a great book on mmWave systems that covers many aspects of the technology targeted for beginners all the way to the advanced users. The authors are some of the most credible scholars I know of who are well respected by the industry. I highly recommend studying this book in detail." —Ali Sadri, Ph.D., Sr. Director, Intel Corporation, MCG mmWave Standards and Advanced Technologies Millimeter wave (mmWave) is today's breakthrough frontier for emerging wireless mobile cellular networks, wireless local area networks, personal area networks, and vehicular communications. In the near future, mmWave products, systems, theories, and devices will come together to deliver mobile data rates thousands of times faster than today's existing cellular and WiFi networks. In Millimeter Wave Wireless Communications, four of the field's pioneers draw on their immense experience as researchers, entrepreneurs, inventors, and consultants, empowering engineers at all levels to succeed with mmWave. They deliver exceptionally clear and useful guidance for newcomers, as well as the first complete desk reference for design experts. The authors explain mmWave signal propagation, mmWave circuit design, antenna designs, communication theory, and current standards (including IEEE 802.15.3c, Wireless HD, and ECMA/WiMedia). They cover comprehensive mmWave wireless design issues, for 60 GHz and other mmWave bands, from channel to antenna to receiver, introducing emerging design techniques that will be invaluable for research engineers in both industry and academia. Topics include Fundamentals: communication theory, channel propagation, circuits, antennas, architectures, capabilities, and applications Digital communication: baseband signal/channel models, modulation, equalization, error control coding, multiple input multiple output (MIMO) principles, and hardware architectures Radio wave propagation characteristics: indoor and outdoor applications Antennas/antenna arrays, including on-chip and in-package antennas, fabrication, and packaging Analog circuit design: mmWave transistors, fabrication, and transceiver design approaches Baseband circuit design: multi-gigabit-persecond, high-fidelity DAC and ADC converters Physical layer: algorithmic choices, design considerations, and impairment solutions; and how to overcome clipping, quantization, and nonlinearity Higher-layer design: beam adaptation protocols, relaying, multimedia transmission, and multiband considerations 60 GHz standardization: IEEE 802.15.3c for WPAN, Wireless HD, ECMA-387, IEEE 802.11ad, Wireless Gigabit Alliance (WiGig) #### **RF-Frontend Design for Process-Variation-Tolerant Receivers** RF and Microwave Transmitter Design is unique in its coverage of both historical transmitter design and cutting edge technologies. This text explores the results of well-known and new theoretical analyses, while informing readers of modern radio transmitters' practical designs and their components. Jam-packed with information, this book broadcasts and streamlines the author's considerable experience in RF and microwave design and development. Page 28/37 #### **RF Imperfections in High-rate Wireless Systems** With the growing complexity of personal mobile communication systems demanding higher data-rates and high levels of integration using low-cost CMOS technology, overall system performance has become more sensitive to RF analog front-end impairments. Designing integrated transceivers requires a thorough understanding of the whole transceiver chain including RF analog front-end and digital baseband. Communication system engineers have to include RF analog imperfections in their simulation benches in order to study and quantify their impact on the system performance. Here the author explores key RF analog impairments in a transceiver and demonstrates how to model their impact from a communication system design view-point. He discusses the design aspects of the front end of transceivers (both receivers and transmitters) and provides the reader with a way to optimize a complex mixed-signal platform by taking into account the characteristics of the RF/analog front-end. Key features of this book include: Practical examples illustrated by system simulation results based on WiFi and mobile WiMAX OFDM transceivers An overview of the digital estimation and compensation of the RF analog impairments such as power amplifier distortion, quadrature imbalance, and carrier and sampling frequency offsets An exposition of the challenges involved in the design of both RF analog circuits and DSP communication circuits in deep submicron CMOS technology MATLAB® codes for RF analog impairments models hosted on the companion website Uniquely the book bridges the gap between RFIC design specification needs and communication systems simulation, offering readers RF analog impairments modeling knowledge and a comprehensive approach to unifying theory and practice in system modelling. It is of great value to communication systems and DSP engineers and graduate students who design communication processing engines, RF/analog systems and IC design engineers involved in the design of communication platforms. #### mmWave Massive MIMO As many circuits and applications now enter the Gigahertz frequency range, accurate digital timing measurements have become crucial in the design, verification, characterization, and application of electronic circuits. To be successful in this field an engineer needs to understand instrumentation, measurement techniques, signal integrity, jitter and timing concepts, and statistics. This book gives a compact, practice-oriented overview on all these subjects with emphasis on useable concepts and real-life guidelines. #### **Software-Defined Radio for Engineers** This practical guide and introduction to the design of key RF building blocks used in high data rate transmitters emphasizes CMOS circuit techniques applicable to oscillators and upconvertors. The book is written in an easily accessible manner, without losing detail on the technical side. #### **Short-range Wireless Communication** Orthogonal frequency-division multiplexing (OFDM) access schemes are becoming more prevalent among cellular and wireless broadband systems, accelerating the need for smaller, more energy efficient receiver solutions. Up to now the majority of OFDM texts have dealt with signal processing aspects. To address the current gap in OFDM integrated circuit (IC) instruction, Chiueh and Tsai have produced this timely text on baseband design. OFDM Baseband Receiver Design for Wireless Communications covers the gamut of OFDM technology, from theories and algorithms to architectures and circuits. Chiueh and Tsai give a concise yet comprehensive look at digital communications fundamentals before explaining modulation and signal processing algorithms in OFDM receivers. Moreover, the authors give detailed treatment of hardware issues -- from design methodology to physical IC implementation. Closes the gap between OFDM theory and implementation Enables the reader to transfer communication receiver concepts into hardware design wireless receivers with acceptable implementation loss achieve low-power designs Contains numerous figures to illustrate techniques Features concrete design examples of MC-CDMA systems and cognitive radio applications Presents theoretical discussions that focus on concepts rather than mathematical derivation Provides a much-needed single source of material from numerous papers Based on course materials for a class in digital communication IC design, this book is ideal for advanced undergraduate or post-graduate students from either VLSI design or signal processing backgrounds. New and experienced engineers in industry working on algorithms or hardware for wireless communications devices will also find this book to be a key reference. #### Low Power RF Circuit Design in Standard CMOS Technology Advanced concepts for wireless technologies present a vision of technology that is embedded in our surroundings and practically invisible. From established radio techniques like GSM, 802.11 or Bluetooth to more emerging technologies, such as Ultra Wide Band and smart dust motes, a common denominator for future progress is the underlying integrated circuit technology. Wireless Technologies responds to the explosive growth of standard cellular radios and radically different wireless applications by presenting new architectural and circuit solutions engineers can use to solve modern design problems. This reference addresses state-of-the art CMOS design in the context of emerging wireless applications, including 3G/4G cellular telephony, wireless sensor networks, and wireless medical application. Written by top international experts specializing in both the IC industry and academia, this carefully edited work uncovers new design opportunities in body area networks, medical implants, satellite communications, automobile radar detection, and wearable electronics. The book is divided into three sections: wireless system perspectives, chip architecture and implementation issues, and devices and technologies used to fabricate wireless integrated circuits. Contributors address key issues in the development of future silicon-based systems, such as scale of integration, ultra-low power dissipation, and the integration of heterogeneous circuit design style and processes onto one substrate. Wireless sensor network systems are now being applied in critical applications in commerce, healthcare, and security. This reference, which contains 25 practical and scientifically rigorous articles, provides the knowledge communications engineers need to design innovative methodologies at the circuit and system level. ### RF Analog Impairments Modeling for Communication Systems Simulation This textbook takes a unified view of the fundamentals of wireless communication and explains cutting-edge concepts in a simple and intuitive way. An abundant supply of exercises make it ideal for graduate courses in electrical and computer engineering and it will also be of great interest to practising engineers. #### **Analysis and Transceiver Design for the MIMO Broadcast** #### **Channel** This book is for RF Engineers and, in particular, those engineers focusing mostly on RF systems and RFIC design. The author develops systematic methods for RF systems design, complete with a comprehensive set of design formulas. Its focus on mobile station transmitter and receiver system design also applies to transceiver design of other wireless systems such as WLAN. This comprehensive reference work covers a wide range of topics from general principles of communication theory, as it applies to digital radio designs to specific examples on implementing multimode mobile systems. #### **Mobile Terminal Receiver Design** Analog circuit design has grown in importance because so many circuits cannot be realized with digital techniques. Examples are receiver front-ends, particle detector circuits, etc. Actually, all circuits which require high precision, high speed and low power consumption need analog solutions. High precision also needs low noise. Much has been written already on low noise design and optimization for low noise. Very little is available however if the source is not resistive but capacitive or inductive as is the case with antennas or semiconductor detectors. This book provides design techniques for these types of optimization. This book is thus intended firstly for engineers on senior or graduate level who have already designed their first operational amplifiers and want to go further. It is especially for engineers who do not want just a circuit but the best circuit. Design techniques are given that lead to the best performance within a certain technology. Moreover, this is done for all important technologies such as bipolar, CMOS and BiCMOS. Secondly, this book is intended for engineers who want to understand what they are doing. The design techniques are intended to provide insight. In this way, the design techniques can easily be extended to other circuits as well. Also, the design techniques form a first step towards design automation. Thirdly, this book is intended for analog design engineers who want to become familiar with both bipolar and CMOS technologies and who want to learn more about which transistor to choose in BiCMOS. #### **Fundamentals of 5G Mobile Networks** Building upon the success of the first edition (2007), Wireless Transceiver Design 2nd Edition is an accessible textbook that explains the concepts of wireless transceiver design in detail. The architectures and the detailed design of both traditional and advanced all-digital wireless transceivers are discussed in a thorough and systematic manner, while carefully watching out for clarity and simplicity. Many practical examples and solved problems at the end of each chapter allow students to thoroughly understand the mechanisms involved, to $\frac{Page 35/37}{Page 35/37}$ build confidence, and enable them to readily make correct and practical use of the applicable results and formulas. From the instructors' perspective, the book will enable the reader to build courses at different levels of depth, starting from the basic understanding, whilst allowing them to focus on particular elements of study. In addition to numerous fully-solved exercises, the authors include actual exemplary examination papers for instructors to use as a reference format for student evaluation. The new edition has been adapted with instructors/lecturers, graduate/undergraduate students and RF engineers in mind. Non-RF engineers looking to acquire a basic understanding of the main related RF subjects will also find the book invaluable. ROMANCE ACTION & ADVENTURE MYSTERY & THRILLER BIOGRAPHIES & HISTORY CHILDREN'S YOUNG ADULT FANTASY HISTORICAL FICTION HORROR LITERARY FICTION NON-FICTION SCIENCE FICTION